Start date: 01 January 2019
End date: 31 December 2023
Project Coordinator: Prof. Dr. Andreas Kortenkamp (Brunel University)
Project Leader VU-Environment and Health: Dr. Timo Hamers
Funding: EU H2020 (Grant Agreement no. 825161)
ATHENA focuses on substances that disturb the thyroid hormone system. Apart from regulating many body functions in adult life, thyroid hormones are essential for healthy brain development during pregnancy and after birth. They control the division of neuronal cells, their proper development and migration. If the delivery of thyroid hormones to the baby’s brain is insufficient or disturbed, irreversible brain damage (manifesting as e.g. low IQ scores) may be the consequence. During the key stages of brain development, the foetus cannot yet produce thyroid hormones and is therefore entirely dependent on sufficient supply from the mother. However, some mothers are deficient in thyroid hormones, due to medical problems or to undersupply of iodine, a key component of thyroid hormones. Certain chemicals can also diminish the uptake of iodine into the thyroid (e.g. thiocyanates in cigarette smoke), whereas others can block hormone synthesis in the thyroid gland or displace the hormone from distributor proteins in the blood (e.g. flame retardant chemicals). If this happens during pregnancy, development of the baby’s brain may be compromised.
It is therefore essential that chemicals capable of disrupting thyroid hormone supply are detected before damage occurs. There are however serious gaps in our arsenal of test methods for identifying such chemicals. In particular, there is a lack of methods for finding chemicals that adversely affect brain development. Much is also to be done for method development to pinpoint disruption of thyroid hormone transport from the mother to the baby.
The ATHENA consortium will close these gaps by developing new methods for incorporation into existing international (OECD) test guidelines.
Read a more detailed background on the ATHENA project here.