Sorry! De informatie die je zoekt, is enkel beschikbaar in het Engels.
This programme is saved in My Study Choice.
Something went wrong with processing the request.
Something went wrong with processing the request.

Statistical and Econometric Analysis of Network Data

Statistical and Econometric Analysis of Network Data

This summer school econometrics course offers a concise introduction to the most recent econometric methods for processing, visualizing, and learning about network data.

Course description

Learn about recent econometric methods to analyze network data

Networks play an increasingly dominant role in many social, business, and economic environments. Moreover, network data becomes increasingly important and available due to the rise of online social media and digitization.

The course will combine online lectures with hands-on empirical and programming exercises.

Continue reading below for course topics and more

About this course

Course level

  • Master / Advanced

Course coordinator

  • Michael König

Credits

  • 2 ECTS

Contact hours

  • 20

Language

  • English

Tuition fee

  • €525 - €995

Additional course information

  • Content guide

    1. Examples of Networks and Data 

    2. Network Statistics, Visualization and Graphs

    • Elements of Graph Theory 

    • Graphs and Matrices 

    • Bipartite Graphs 

    • Core-periphery Networks and Nested Split Graphs 

    • Network Statistics: Average path length, clustering and assortativity 

    • Centrality in Networks: Degree, eigenvector, Katz-Bonacich centrality and Google's Page Rank 

    • Network Visualization: Force-directed, circular and layered layout 

    3. Econometrics of Interactions in Networks

    • Spatial Autoregressive (SAR) Model 

    • Linear Quadratic Utility 

    • Endogeneity of the Spatial Lag 

    • Two-Stage Least Squares (2SLS) 

    • Maximum Likelihood Estimation (MLE) 

    • Identification Issues 

       – Correlated Effects, Sorting and Selection 

       – Endogenous Link Formation 

    • Multiple Spatial Weight Matrices 

    • Spatial Panel Data

    4. Econometrics of Network Formation

    • Exponential Random Graph Model (ERGM) 

    • Conditional Edge-Independence 

       – Erdös-Rényi Random Graph 

       – Logistic Regression 

       – Unobservable Characteristics (beta-model) 

       – Tetrad Logit Estimator 

    • Random Utility Model 

    • Maximum Likelihood Estimation (MLE) 

    • Markov Chain Monte Carlo 

       – Gibbs Sampling 

       – Metropolis Hastings Algorithm 

    • Stochastic Block Model (SBM) 

    • Temporal ERGM

    5. Joint Estimation of Outcomes and Network Formation

    5.1. Coevolution of Networks and Behaviour: An application to R&D collaboration networks

    • Structural Model: Utility and the potential game     

    • Estimation     

       – Computational Problem and the Exchange Algorithm     

       – Double Metropolis-Hastings (DMH) Algorithm     

       – Unobserved Heterogeneity  

    • Empirical Illustration: R&D collaborations     

    5.2. Network Formation with Multiple Activities: An application to team production and co-authorship networks  

    • Bipartite Network, Production Function, and Utility

    • Equilibrium Characterization and Line Graphs  

    • Estimation with Endogenous Matching

    • Empirical Illustration: Co-authorship networks

    6. Spatial Modelling Approach for Dynamic Network Formation and Interactions

    • Spatial Dynamic Panel Data (SDPD) Model

    • A General Dynamic Network Formation Model

    • Combining SDPD with the Network Formation Model: Joint likelihood function

    • An Empirical Application to Peer Effects in Academic Performance

    7. Big Data Meets Networks 

    • The Digital Layer: How innovative firms relate on the Web

    • Automated Robot for Generic Universal Scraping (ARGUS) 

    • Input, Interface and Output of ARGUS 

    • Sectoral Hyperlink Network 

    • Hyperlink Types

  • Learning objectives

    Upon successful completion of the course, students will:

    • become acquainted with different statistical methodologies for analysing networks while learning how to see these different methodologies complementing each other.

    • learn to model network problem situations mathematically, and adapt the methods learned to new situations at hand.

    • be able to recognize, understand, and analyse societal and business problems in which networks are central.

    • learn how networks affect demand and supply in markets, how this leads to market failures, and how government policies can address these.

  • About the course coordinator

    Michael D. König is an associate professor at the Department of Spatial Economics at VU Amsterdam. He is also a research fellow at the Tinbergen Institute, the Centre for Economic Policy Research (CEPR) and the Swiss Economic Institute (KOF). Prior to joining VU Amsterdam he was a senior research associate at the University of Zurich, a visiting scholar at Bocconi University, the Stanford Institute for Economic Policy Research (SIEPR) and the Department of Economics at Stanford University.

  • Course syllabus

    Here you can download the preliminary syllabus for the summer course 2024. 

    *Please note that this is the preliminary syllabus, and it still might be subject to change. 

Team VU Amsterdam Summer School

We are here to help!

Skype: by appointment via amsterdamsummerschool@vu.nl

Contact

  • Yota
  • Programme Coordinator
  • Esther
  • International Officer

Quick links

Research Research and Impact Support Portal University Library VU Press Office

Study

Education Study guide Canvas Student Desk

Featured

VUfonds VU Magazine Ad Valvas

About VU

About us Contact us Working at VU Amsterdam Faculties Divisions
Privacy Disclaimer Safety at VU Amsterdam Colofon Cookies Web archive

Copyright © 2024 - Vrije Universiteit Amsterdam